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Abstract. To understand how a single neurone processes information, it is critical to examine
the relationship between input and output. Marsalek, Koch and Maunsell’s study focused on
output jitter (standard deviation of output interpike interval) found that for the integrate-and-fire
(I&F) model this response measure converges towards zero as the number of inputs increases
indefinitely when interarrival times of excitatory inputs (EPSPs) are normally or uniformly
distributed. In this work we present a complete, theoretical investigation, corroborated by
numerical simulation, of output jitter in the I&F model with a variety of input distributions and
a range of values of number of inputs,N . Our main results are: the exponential distribution
input is a critical case and its output jitter is independent ofN . For input distributions with
tails which decrease faster than the exponential distribution, output jitter converges to zero as
discovered by Marsalek, Koch and Maunsell; whereas an input distribution with a more slowly
decreasing tail induces divergence of output jitter. Exact formulae for mean firing time are also
obtained which enable us to estimate the coefficient of variation. The I&F model with leakage
is also briefly considered.

1. Introduction

Marsaleket al [24] have shown that output jitter (the standard deviation of the intervals
between output spikesσout) in the integrate-and-fire (I&F) model converges to zero as the
number of synaptic inputs (EPSPs) becomes large when EPSP interarrival time distributions
are normal or uniform. Based upon extensive numerical simulations on more realistic
neurones, they argue that this property provides one of the biophysical substrates necessary
for exploiting the detailed timing information inherent in spike trains. However, a
theoretically rigorous approach is lacking and furthermore we may ask ourselves: is this
property universal in the sense that it is independent of input distribution, even in the
simplest spiking model—the I&F model?

In this paper we carry out a theoretical study, corroborated by numerical simulation, of
the relationship between input and spike output jitter. We find that there are three kinds of
behaviour ofσout and its relationship to the number of synaptic inputs.
• One is that discovered by Marsaleket al [24]. An exact relationship between input

jitter and output jitter is given in the case when the input interarrival distribution follows
the normal, uniform or truncated exponential distribution.
• A second is thatσout diverges to infinity in the case when the input interarrival time

distribution follows the Pareto distribution which indicates that each consecutive layer of
spiking neurones will introduce more and more temporal jitter, compromising the ability of
higher level neurones to respond sharply to a sensory input and rendering synfire assemblies
[1, 2] difficult.
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• A special case occurs when input timing is exponentially distributed; in this caseσout

remains constant as the number of inputs increases.
The important differences between exponential, Pareto and Gaussian distributions from

the point of view of their effect on spike output jitter relate to tail length: the tail of the
exponential distribution is exp(−x), the Pareto distributionx−α, α > 0 (i.e. tending to zero
more slowly asx →∞) and the Gaussian distribution is exp(−x2/2) (tending to zero more
quickly asx →∞).

For differently distributed inputs, the mean firing time is also exactly determined: either
tending to infinity (the normal and exponential distribution) or to a constant (the uniform and
truncated exponential distribution). Correspondingly there are different kinds of behaviour
of the coefficient of variationCv. We also consider the I&F model with leakage, in the
average sense (see section 5).

The main tool we employ here is the statistical theory of extreme values which we have
previously applied to other problems in neural computation [6, 10].

2. The I&F models

We begin with the simplest model of a spiking cell. In the I&F model each synaptic input
instantaneously increments the membrane potential,V , positively or negatively, depolarizing
or hyperpolarizing the membrane. OnceV reaches a firing thresholdVthre, an output spike
is generated andV is reset toVrest, the resting potential. As in [24], for simplicity, the
I&F unit is assumed to only receive inputs fromN excitatory synaptic inputs of equal
weight (EPSPs),a. Each synaptic input can be activated independently of the others. More
precisely, the voltageV (t) of the neurone satisfies

CV̇ = I (t) (1)

with V (0) = Vrest, I (t) =
∑N

i=1 aδ(t − ξi) and independent identically distributed (i.i.d.)
random sequenceξi, i = 1, . . . , N , C is the membrane capacitance. The solution of
equation (1) is

V (t) = Vrest+ 1

C

N∑
i=1

aI{ξi<t}

which means whent = ξi the neurone receives an EPSP from theith input. A
typical set of parameters which match to slice recordings of regular spiking cells [28]
areVrest= −73.6± 1.5 mV, 1/gleak = 39.9± 21.2 M�, C = τgleak, τ = 20.2± 14.6 ms.
The absolute spike thresholdVthre was set 20 mV aboveVrest, anda is a constant related
to the size of a single EPSP. Recently [21] simultaneous intracellular recordings from pairs
of pyramidal cells in cortical slice revealed a range of single-axon EPSPs from 0.05 mV
to greater than 2 mV with a mean of 0.55 mV, which implies that we need aboutN ∼ 40
EPSPs to trigger a spike.

Defineξ = inf{t : V (t) > Vthre}. Again as in [24] we first suppose that whenN (fixed
but large) EPSPs arrive, an output spike is generated and soξ = max{ξ1, . . . , ξN }. The
output jitter is given byσ 2

out = E(ξ −Eξ)2. In section 6 we consider the more general case
thanN − k EPSPs, for any givenN > k > 0, are needed to trigger a spike.
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3. Results fork = 0

For most commonly encountered random variable sequences, the distributions of their
extreme value (maximum of the sequence) take the following form [18]

P(aN(ξ − bN) 6 x)→ G(x)

for constantsaN, bN depending on specific distributions andG given in the appendix.
Depending on the different forms of the distributionG(x) they can be further divided into
three types: type I, type II and type III (see the appendix).

3.1. Output jitter I: Gaussian and uniform distributions

Extreme value theory (see the appendix) tells us that the output jitter takes the form

σout =
√
〈(ξ − bN)2〉 − (〈ξ〉 − bN)2 = 1

aN

√∫
x2 dG(x)−

(∫
x dG(x)

)2

. (2)

In particular the output jitter of type I is thus†

σout = 1

aN

√∫ ∞
−∞

x2 exp(−e−x)e−x dx −
(∫ ∞
−∞

x exp(−e−x)e−x dx

)2

= 1.277

aN
. (3)

Under the condition thatξi, i = 1, 2, . . ., are i.i.d. random variables and normally
distributed‡ we have the following equation

σout = 1.277√
2 logN

.

The mean ofξ , the average firing time of the neurone isbN ∼
√

2 logN . As observed by
Marsaleket al [24] the firing time is delayed tobN and the jitter is reduced. The relationship
between input jitterσin and output jitter is

σout

σin
= 1.277√

2 logN
. (4)

Note that constant 1.277 is universal for type I distributions.
The behaviour of output spike jitter of the uniform distribution is

σout = 1

N

√∫ 0

−∞
x2 exp(x) dx −

(∫ 0

−∞
x exp(x) dx

)2

= 1

N
(5)

which tends to zero faster than in the case of the Gaussian distribution. Unlike the normal
distribution case the firing time becomes exact, att = 1. The relationship between input
jitter and output jitter is (see [24])

σout

σin
= 2
√

3

N
. (6)

The above two cases have been considered in [24] and our results coincide with theirs.
In section 3.2 we consider output jitter for other distributions.

† The constant 1.277 is obtained from our numerical simulation (see figure 2).
‡ This is not a sound assumption since we requireξi > 0, i = 1, . . . , N . However, for a comparison with
numerical results of the same model in [24] we consider this case first. In section 3.2 we take into account more
biologically plausible situations.
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3.2. Output jitter II: Pareto, exponential and truncated exponential distribution

Very different behaviour is observed for type II random variables (the Pareto distribution
with distribution function 1− x−10/3, see the appendix). In this case we see that output
jitter tends to infinity given by

σout = N0.3

√∫ ∞
0

3x−2 exp(−x−3) dx −
(∫ ∞

0
3x−3 exp(−x−3) dx

)2

but with

σin =
√

7/4.

Let c1 =
√∫∞

0 3x−2 exp(−x−3) dx − (∫∞0 3x−3 exp(−x−3) dx)2. Then the relationship
between input jitter and output jitter is given by† (see figure 2)

σout

σin
= N0.3c1

4√
7
.

A comparison of type I and type II distributions may give us the following impression.
The Gaussian distribution with a distribution density exp(−x2/2) decreases to zero
exponentially and so the maximum of a sequence tends to infinity relatively slowly, i.e.
with a small variance; whereas the Pareto distribution with a densityαx−α−1 goes to zero
as a power (and hence much more slowly) and then the maxima become more spread.
Nevertheless the behaviour of output jitter is more subtle as we discover in the following
situations.

It is generally believed that for many neuronal systemsξ1 is effectively exponentially
distributed and so the distribution tail will tend to zero exponentially, which in turn is
thought to imply shrinkage in output jitter with respect to input jitter. The shrink rateaN
depends on the specific distribution with a universal constant 1.277. But the exact picture
is: for exponentially distributedξ1 we haveaN = 1, bN = logN and thus the following
equation holds

σout

σin
= 1.277. (7)

The firing time has a mean delay oft = bN , but output jitter is constant, i.e. independent
of N !

For a biological system there are physical limits, and so it is for the distribution of
interarrival times of EPSPs. This means a further restriction on the distribution of timing can
be introduced: a truncated exponential distribution, i.e. a random variable with distribution
function F(x) = K(1− e−x) for 0 6 x 6 xF . This results in type III limiting behaviour
with

aN = N

exF − 1
bN = xF α = 1. (8)

The relationship between output and input jitter is given by

σout

σin
= exF − 1

Nσin
(9)

with σ 2
in = (K+2e−K−Ke−K+2e−K−K2e−K−2K3e−K−e−2K−2Ke−2K−K2e−2K)/K2.

For synchronous firing of neurones, this is appropriate behaviour in the sense that the firing

† We takec1 = 1
1.4 obtained from our numerical simulation, see figure 2.
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Figure 1. The output jitter versusN when input interarrival times follow a Pareto distribution,
exponential distribution and uniform distribution (indicated PD, ED and UD respectively). The
exponential distribution is the critical case with constant jitter; the fast decreasing distribution
tail of the uniform distribution ensures output jitter converges towards zero, whereas the slow
decay of distribution tail (Pareto) causes divergence of output jitter.

Table 1.

Distribution Output jitter Mean firing time

Gauss 1.277/
√

2 logN
√

2 logN
Pareto (α = 10

3 ) N0.3/1.4 1.3N0.3

Uniform 1/N 1
Exponential 1.277 logN
Truncated exponential (exF − 1)/N xF

time becomes more and more precise, with output jitter decreasing at a rate of order 1/N ,
similar to the uniform distribution.

We are now in a position to analyse the relationship between output jitter and input
distribution. The exponential distribution is the critical case, with constant output jitter.
The fast decreasing distribution tail of the truncated exponential distribution ensures that
output jitter converges to zero. On the other hand, a slow decay like the Pareto distribution
causes divergence of output jitter (see figure 1).

We summarize our results in the following theorem.

Theorem 1.In the I&F model, the mean and standard deviation of the output interspike
interval distributions are as in table 1†.

† See the next section for an estimation of constants.
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3.3. Cv of output interspike intervals

In recent discussions of rate or timing coding of neural computation [14, 15, 22, 23, 25, 26],
many people have paid attention to the coefficient of variation. The coefficient of variation
(Cv) of output interspike intervals, defined as the standard deviation divided by the mean
interspike interval, has been considered by several authors [31, 27] for the I&F model as
well. Here as a simple consequence of our previous results we have the following ranges
of Cv.
• Pareto: 0.5< 1/(1.4× 1.3) < 1 (a constant).
• Uniform: 1/N (tends to zero).
• Exponential: 1/ logN (tends to zero).
• Truncated exponential:(exF − 1)/(xFN) (tends to zero).

4. Numerical results

In this section we present numerical simulations to confirm our theoretical results. Random
numbers are generated using the NAG library and for each integerN (= 3, . . . ,10 000)
we average 10 000 times to obtain a single estimate of〈σout〉. Three distributions: the
exponential, uniform and Pareto distributions, are used in our simulations.

As predicted using our theoretical results we have the following.
• Output jitter of exponentially distributed EPSPs stays constant. This constant is

universal for all type I distributions, equal to 1.277.
• For the uniform distribution the decreasing rate of its output jitter is 1/N . Numerical

results perfectly fit the theoretical formula.
• We setα = 1

0.3 in the Pareto distribution (see the appendix). The behaviour of
output jitter of the Pareto distribution is substantially different from the above two cases:
in the numerical simulations the effects of sampling variation on the estimates of mean
and variance are still evident even after we base each estimate on 10 000 simulations for
each value ofN , although globally the numerical values are close to the theoretical ones.
The oscillations in the sample curves occur because in the simulation experiments, to save
computing time, the estimates fori synaptic inputs are obtained by supplementing the EPSPs
underlying the estimates fori−1 inputs with an additional randomly generated EPSP. From
the numerical results we approximately estimate the constantc1 in the previous section.

Now let us turn to numerical results for mean firing time. Since we are not able to
estimate theoretically the mean firing time for the Pareto distribution, we simply estimate
it numerically. It is found that 1.3N0.3 fits well. Remembering that output jitter of the
Pareto distribution diverges to infinity and that in our numerical simulations the effects of
sampling variation were apparent in the form of oscillations about the expected curve as
shown in figure 2, it is at first sight surprising that the mean firing time diverges to infinity
smoothly. Nevertheless, we might expect estimates of the mean to be much better behaved
since they are dependent on only the first and not higher-order moments.

To fully understand the numerical results a few words on the difference between the
Pareto distribution and the Gaussian distribution are needed. We are familiar with Gaussian
distributions, which are also called ‘normal’ curves, and encountered frequently as sampling
distributions of statistics (e.g. sample mean) that approach normality for large sample
sizes, behaviour which is called asymptotically normal. The means and variances of these
distributions are finite well defined values. However, these distributions are a subset of
a much larger class of distributions that are called ‘stable distributions’, after Lévy [3].
Stable distributions have the property that the distribution of linear combinations of two
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Figure 2. Numerical results of output jitter (σout) for different input distributions versus number
of inputs. The exponential distribution is the critical case. (a) Output jitter is sensitive to input
timing distribution. For exponentially distributed inputs, output jitter is constant, for the Pareto,
output jitter diverges to infinity (replotted in (c)) and for the uniform output jitter converges to
zero (replotted in (b)). (b) Output jitter of the uniform distribution versus number of inputs.
Numerical results and theoretical estimate (see equation (5)) fit perfectly well. (c) Output jitter
of the Pareto distribution versus the number of inputs. Note that there are always oscillations,
although we have averaged over 10 000 times of simulation at each value ofN . Theoretical
results show the theoretical curveN0.3/1.4.

independent variables has the same shape as the original distribution. Stable distributions
can have moments that are either finite or infinite. Gaussian distributions are stable
distributions with finite mean and finite variance. These properties satisfy the conditions
of the central limit theorem, which means that as more experimental data are analysed, the
mean is determined with increased precision. There are also stable distributions with infinite
variance or higher-order moments, which we call Lévy stable [20]. The property that the
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Figure 3. Numerical results of mean firing time of different distributions versus the number of
inputs. For uniformly distributed inputs, mean firing time is constant (trivial). (a) The mean
output firing time is sensitive to the input timing distribution. For exponential and Pareto inputs,
the mean diverges to infinity (replotted in (b) and (c)). (b) Mean of the exponential distribution
versus the number of inputs. Numerical results and theoretical estimate (see equation (5)) fit
well asN is large. (c) Mean of the Pareto distribution versus number of inputs. Fitted curve is
1.3N0.3.

second-order moment is infinite means that this type of distribution does not satisfy the
conditions of the central limit theorem in its usual form; indeed the variance of the linear
combination,

∑
ciXi , of independent variables such that

∑
ci = 1 can be the same as that

of the distribution of each contributing random variable. Thus, as more experimental data
are analysed, the precision of the determination of the mean does not improve. (See [3,
pp 165–73] for a more theoretically oriented discussion on stable distributions and Lévy–
Pareto distributions.)

A few words on proving whether a given set of data follows a distribution with a long tail
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[11], where the tail of a distribution tends to zero geometrically (e.g. Pareto distribution),
or with a short tail, where the tail of the distribution tends to zero exponentially (e.g.
Gaussian, exponential or uniform distribution). With large data sets, trying to fit a traditional
(short tail) distribution to a ‘truly’ long-tail distribution is equivalent to approximating a
hyperbolically decaying function by a sum of exponentials. Although always possible, the
number of parameters needed will tend to infinity as the sample size increases. Thus, long-
tail distributions become a necessity from the point of view of parsimonious modelling of
large data sets that exhibit the so-called ‘Joseph effect’ [20]. On the other hand, given
a finite set of data, it is in principle not possible to decide whether the distribution is
long tailed or not. For finite sample sizes, distinguishing between long and short tails is,
in general, problematic and empirical studies of a single data set can result, therefore, in
very different conclusions, depending on the statistical methods used. There has recently
been considerable progress in developing a theory of statistical inference for long tailed
distributions. While many problems remain unsolved, for some commonly encountered
situations suitable statistical methods are now sufficiently well understood to be used in a
larger class of data analyses (see for example [29]).

5. The model with leakage

It is well known that depolarizations do not persist forever, but that perturbations of
membrane voltage tend to decay towards the resting potential. The I&F model with leakage
can be expressed in the following way [16]

CV̇ = −gleakV + I (t). (10)

The solution of equation (10) is

V (t) = Vrest+ 1

C

N∑
i=1

exp((ξi − t)/τ )aI{ξi<t}. (11)

Note that in this case the actual numberN of EPSPs which can activate a spike depends
on each realization ofξi , i = 1, 2, . . . and cannot be determineda priori.

Suppose that in the case of no leakage we needN0 EPSPs to trigger a spike, then due
to leakage, to acquire enough charge to emit a spike more EPSPs are needed. Let us first
estimate how many EPSPs will trigger a spike in the leakage case. We confine ourselves
to the normal distribution first. From the discussion of the previous section: theN th EPSP
comes at a time which does not vary much atξ ∼ √2 logN for N large. Taking expectation
on both sides of equation (11) we have

〈V (ξ)〉 = Vrest+ 〈eξ1/τ 〉aN
C exp(

√
2 logN/τ)

.

Let (〈V (ξ)〉 − Vrest)C/a = N0 thenN1 is given by

N0 = exp(1/(2τ 2))N1

exp(
√

2 logN1/τ)
. (12)

On average,N1 EPSPs trigger a spike;σout reaches the value obtained atN = N0 without
leakage atN = N1 > N0 in its presence.

We employ numerical simulations to check the accuracy of our estimation. Taking
C = 1, a = 0.5 mV and〈V (ξ)〉 − Vrest= 20 mV, τ = 20.2 ms (see section 2 for the range
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Figure 4. N0 versusN1 whenN0 = 40,N1 is about 47.

of these parameters) we haveN0 = 40. From equation (12) (see figure 4) we see thatN1

is about 47. In terms of equation (11) we simulate

A =
47∑
i=1

exp((ξi − t)/τ )I{ξi<t}

with t = √
2 logN1 as mentioned above. We find thatA = 40.9 ∼ N0 with a standard

deviation of 0.4. This coincidence can be verified in terms of the law of large numbers as
well. HenceN1 of equation (12) gives a quite reasonable estimate of the average number
needed to trigger a spike in the presence of leakage, which, in conjunction with results
in the previous sections, enables us to reasonably assess other quantities such as the CV,
output jitter and mean firing time of the model.

Analogous arguments can be applied to the situation in which EPSP emission follows
distributional forms other than the Pareto distribution since the variance ofξ then becomes
large.

6. More realistic models

One of the restrictions of the model that we considered in the previous section is that the
neurone fires if and if only allN EPSPs arrive. What happens ifN − k EPSPs, for any
given 0< k < N , are needed to trigger a spike?

For k = 0, 1, . . ., denoteξ (k) = ξNE−k as the kth largest value of the sequence
ξ1, ξ2, . . . , ξNE . We have the following lemma.

Lemma 1 ([18]).For eachk = 0, 1, 2, . . .,

P(aN(ξ
(k) − bN) 6 x)→ G(x)

k∑
s=0

(− logG(x))s

s!
(13)

whereaN, bN andG(x) depending on the input distributions are given in the appendix.
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Table 2. A summary of results.

Distribution Output jitter/input jitter Mean firing time Coefficient of variation

Gauss converges towards zero tends to infinity
Pareto diverges to infinity diverges to infinity between 0.5

and 1 (α = 10
3 )

Uniform converges towards zero tends to a constant tends to zero
Exponential is constant tends to infinity tends to zero
Truncated
Exponential converges towards zero tends to a constant tends to zero

Denote

Ḡ(x) = G(x)
k∑
s=0

(− logG(x))s

s!

we have, according to lemma 1, that

σout = 1

aN

√∫
x2 dḠ(x)−

(∫
x dḠ(x))

)2

. (14)

Comparing equation (2) with equation (14), we conclude that all results onσout in sections 3
and 4 are true for the case considered in this section with a different contractive or expanding

constant
√∫

x2 dḠ(x)− (∫ x dḠ(x)))2 depending onk.

7. Discussion

In an attempt to fully understand the exact relationship between output jitter and input jitter
for the I&F model, we have analytically derived a number of results. These tell us that
there are different types of behaviour for output jitter, mean firing time and coefficient of
variation depending on the nature of EPSP interarrival time distribution. We summarize our
results in table 2.

Although our previous discussion and biological findings could be said to favour the
hypothesis that EPSPs are emitted in a random fashion subjected to the truncated exponential
distribution, it is known that the magnitude of EPSPs varies greatly, depending on their
location on the dendritic tree [17], quantal fluctuations, etc. Neuronal responses are also
very different. For example magnocellular vasopressin hypothalamic neurones fire without
apparent correlation from neurone to neurone, whereas oxytocin neurones also found in the
hypothalamus are strongly organized to fire together at certain times [13]. Our results in
this paper present the whole spectrum of types of behaviour of output jitter which provides
a prototype for further tests on assumptions of information processing in single neurones.
Results in this paper indicate that a neurone is in a critical position if input EPSPs are
exponentially distributed; and a perturbation of the tails of the distribution can result in a
change of its output jitter—from convergence to divergence—and consequently its ability
in information processing.

The possibility that the brain might use higher-order statistics has been pointed out from
a theoretical view point before [19]. Our results also support the idea that neurones can be
either a natural signal amplifier (when output jitter converges) or a signal attenuator (when
output jitter diverges) dependent on the higher-order statistics of input signals.
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A few words about our approach using the statistical theory of extreme values are
needed. It seems that the power of extreme value theory in neural computation has not yet
been fully realized. In previous papers [8–10, 7] we developed a theory related to extreme
values in other classes of neurodynamics. In [6], we applied extreme value theory to some
challenging problems in neural computation, such as the capacity of the Hopfield model,
learning curves of perceptron learning etc. In this paper, we have seen how this theory
can be exploited in relation to neurones as threshold devices utilizing the fact that when
membrane potential exceeds a threshold, in other words takes an extreme value, the neurone
fires. Hence, at least theoretically when confronting some complex nonlinear phenomena
arising in neural computation, this well-developed theory—the statistical theory of extreme
values—can help us to understand and model some important phenomena, as we have
demonstrated previously and in this paper.

Finally, we point out here that although the original motivation in this paper for
considering the I&F model is the modelling of a single neurone it should be mentioned that
the model is grossly idealized. Despite the unphysiological nature of the model, it is useful
because the model can be analysed completely thereby providing a standard with which to
compare other models and also real nerve cells [5]. The real situation in biological systems
is far more complex than we discuss here. Thomson and his colleagues (see for example [30]
and references therein) carried outin vitro experiments to characterize the activity-dependent
properties of synaptic transmission and these properties have been included in the I&F model
of [4]. As mentioned above, leakage is not catered for in most of our results, although we
do provide an assessment of its effect. The detailed mechanisms of IPSPs have also not
been included, although in some biological experiments these can be blocked. The I&F
model with exclusively excitatory inputs has also been employed to model a wide variety
of phenomena in physiology: for example the micturition reflex, the mechanical ventilation
of cats which exhibits chaotic behaviour, and also in the context of circadian rhythms etc
(see [12] for a review). Furthermore in some neuronal systems excitatory cells are known to
vastly outnumber inhibitory neurones. For example, 85–90% of cortical cells are estimated
to be excitatory [2, p 53]. In these cases a model based on excitatory synaptic input might
form a useful approximation. The I&F model has also been the subject of many recent
neural modelling studies [27, 31, 24] and has been shown to match experimental neuronal
spike trains well (e.g. [11, 32]). When particularly focusing on stochastic synaptic input, the
I&F model is a yardstick for comparison with more complex models. A great strength in
this context is that it is more analytically tractable than biologically more realistic models;
results of the type presented here are not available for more realistic models. Complications
such as different levels of inhibitory input and leakage analysed using simulation will be
presented elsewhere (e.g. [5]). In any case, after many years’ modelling single neurones, in
the face of the diverse complexities of real neurones, the minimum combination of elements
needed for a model to reflect key properties of the real thing remains a matter of conjecture.
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Appendix. Behaviours of extreme values

All materials presented here can be found in [18]. There are three types of behaviour for
the extreme value of a random sequence.

Type I:

G(x) = exp(−e−x) −∞ < x <∞.
The normal distribution is a special case with{

aN = (2 logN)1/2

bN = (2 logN)1/2− 1
2(2 logN)−1/2(log logN + log 4π).

(A1)

Type II:

G(x) =
{

0 x 6 0

exp(−x−α) for someα > 0 x > 0.

The Pareto distribution with distribution functionF(x) = 1− Kx−α, x > K1/α, K > 0,
α > 0 is a candidate of this type of behaviour withaN = (KN)−1/α, bN = 0. For simplicity
of notation we takeK = 1 andα = 10

3 in our following discussion.
Type III:

G(x) =
{

exp(−(−x)α) for someα > 0 x 6 0

1 x > 0.

The uniform distribution on [0, 1] is of this type withα = 1, aN = N andbN = 1.
Various necessary and sufficient conditions are known—involving the ‘tail behaviour’

1− F(x) asx increases—for each type of limit, whereF(x) is the distribution function of
ξ1. Here is an example. LetxF = sup{x;F(x) < 1}. Thenξi, i = 1, . . . , N belong to each
of the three types if and only if:

type I: there exists some strictly positive functiong(t) such that limt→xF (1− F(t +
xg(t)))/(1− F(t)) = e−x for all x;

type II: xF = ∞ and limt→∞(1− F(tx))/(1− F(t)) = x−α, α > 0, for eachx > 0;
type III: xF <∞ and limh→0(1−F(xF − xh))/(1−F(xF − h)) = xα, α > 0, for each

x > 0.
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